Characterizing the Reliability of a Biomems – Based Cantilever Sensor
نویسندگان
چکیده
The cantilever-based BioMEMS sensor represents one instance frommany competing ideas of biosensor technology based on Micro Electro Mechanical Systems. The advancement of BioMEMS from laboratory scale experiments to applications in the field will require standardization of their components and manufacturing procedures as well as frameworks to evaluate their performance. Reliability, the likelihood with which a system performs its intended task, is a compact mathematical description of its performance. The mathematical and statistical foundation of systems-reliability has been applied to the cantilever-based BioMEMS sensor. The sensor is designed to detect one aspect of human ovarian cancer, namely the over-expression of the folate receptor surface protein (FR – α). Even as the application chosen is clinically motivated, the objective of this study was to demonstrate the underlying systems-based methodology used to design, develop and evaluate the sensor. The framework development can be readily extended to other BioMEMS-based devices for disease detection and will have an impact in the rapidly growing $30 bn industry. The Unified Modeling Language (UML) is a systems-based framework for design and development of object-oriented information systems which has potential application for use in systems designed to interact with biological environments. The UML has been used to abstract and describe the application of the biosensor, to
منابع مشابه
A mechanical micro molecular mass sensor
One of the bio-sensing mechanisms is mechanical. Rather than measuring shift in resonance frequency, we adopt to measure the change in spring constant due to adsorption, as one of the fundamental sensing mechanism. This study explains determination of spring constant of a surface functionalized micro machined micro cantilever, which resonates in a trapezoidal cavity-on Silicon wafer, with the ...
متن کاملCouple Stress Effect on Micro/Nanocantilever-based Capacitive Gas Sensor
Micro/nanocantilevers have been employed as sensors in many applications including chemical and biosensing. Due to their high sensitivity and potential for scalability, miniature sensing systems are in wide use and will likely become more prevalent in micro/nano-electromechanical systems (M-NEMSs). This paper is mainly focused on the use of sensing systems that employ micro/nano-size cantilever...
متن کاملEffect of the Interparticle Interactions on Adsorption-Induced Frequency Shift of Nano-beam-Based Nanoscale Mass-Sensors: A Theoretical Study
It is well-known that the Interparticle interactions between adsorbates and surface of an adsorbent can affect the surface morphology. One of the consequences of this issue is that the resonant frequency of a nanoscale resonator can be changed due to adsorption. In this study we have chosen a cantilever-based nanoscale mass-sensor with a single nanoparticle at its tip. Using the classical...
متن کاملA mechanical micro molecular mass sensor
One of the bio-sensing mechanisms is mechanical. Rather than measuring shift in resonance frequency, we adopt to measure the change in spring constant due to adsorption, as one of the fundamental sensing mechanism. This study explains determination of spring constant of a surface functionalized micro machined micro cantilever, which resonates in a trapezoidal cavity-on Silicon wafer, with the ...
متن کاملSimulation and Modeling of a High Sensitivity Micro-electro-mechanical Systems Capacitive Pressure Sensor with Small Size and Clamped Square Diaphragm
This paper proposes a Micro-electro-mechanical (MEMS) capacitive pressure sensor that relies on the movable electrode displaced like a flat plate equal to the maximum center deflection of diaphragm. The diaphragm, movable electrode and mechanical coupling are made of polysilicon, gold and Si3N4, respectively. The fixed electrode is gold and the substrate is Pyrex glass. This proposed method inc...
متن کامل